Posts tagged ‘probabilidad de ocurrencia’

Es común que cuando estamos efectuando actividades de Análisis de Riesgos de Calidad, puedan surgir problemas de subjetividad e incertidumbre.

La mayoría de las herramientas de gestión de riesgos existentes no proporcionan estrategias formales para abordar este tipo de problemas.

Las influencias de lo que se conoce como heurística humana (*) durante las actividades relacionadas con la Gestión de Riesgos de Calidad o GRC (tales como Brainstorming y la estimación de probabilidad de ocurrencia) se pueden añadir a estos problemas.

Los efectos adversos potenciales de tales heurísticas a la hora de identificar modos de falla y sus probabilidades de ocurrencia deben ser contrarrestados.

Una de las fuentes más significativas de incertidumbre y subjetividad en las actividades de GRC es el factor de probabilidad de ocurrencia que suele utilizarse para estimar los riesgos. Muchas definiciones de riesgo incluyen el factor de probabilidad de ocurrencia de la falla.

Esta probabilidad de ocurrencia puede ser estimada de dos formas distintas, algunos lo hacen de manera subjetiva o basada en la creencia que tiene la persona que la falla ocurrirá según su conocimiento actual, o sea que depende del conocimiento de la persona que asigna el valor de probabilidad.

Otros utilizan la frecuencia de ocurrencia de la falla en el pasado (historial de la falla), aquí cuanta más experiencia acumulada hay, mejor. En este punto una limitante es si cuando se está efectuando el análisis, está definida una población relevante de datos de fallas similares y también considerar la disponibilidad de dicho análisis, usualmente colocamos lo que tenemos en mente, dependiendo de nuestra memoria.

Por lo tanto, las actividades de Brainstorming bien diseñadas y basadas en la ciencia presentan oportunidades para reducir la incertidumbre que puede surgir durante la etapa donde se solicita a los expertos que brinden una opinión sobre la probabilidad de que ocurra una falla.

Algunos tipos de heurísticas a considerar son:

Heurísticas de afecto

La teoría de la heurística del afecto es que la respuesta emocional de uno a un estímulo puede afectar las decisiones de un individuo. Cuando las personas tienen poco tiempo para reflexionar y evaluar una situación con cuidado, pueden basar su decisión en sus reacciones emocionales inmediatas. En lugar de realizar un análisis de costo-beneficio, la heurística del afecto se enfoca en provocar una respuesta reaccionaria automática.

Heurística de disponibilidad

Las heurísticas de disponibilidad son juicios que las personas hacen con respecto a la probabilidad de un evento en función de la información que viene a la mente rápidamente. Cuando las personas toman decisiones, generalmente se basan en el conocimiento previo de un evento. Como resultado, tendemos a sobrestimar la probabilidad de que ocurra un evento simplemente porque se nos viene a la mente rápidamente. Tales atajos mentales nos permiten tomar decisiones rápidamente, pero también pueden ser inexactos.

Heurísticas representativas

Las heurísticas representativas ocurren cuando evaluamos la probabilidad de un evento en función de su similitud con otro evento. En general, las personas tienden a sobrestimar la probabilidad de que ocurra un evento en función de su similitud percibida con otro evento. Cuando sucede, tendemos a ignorar la probabilidad real de que ocurra un evento, independientemente de su similitud con otros eventos.

En un próximo artículo veremos algunas ideas para contrarrestar estas heurísticas.

(*) Heurísticas son comportamientos cognitivos que pueden influir en cómo los individuos toman decisiones en un contexto de incertidumbre, y pueden ser una fuente de sesgo significativo o error de juicio.

Antes de comenzar con la guía rápida de FMEA, creo que sería bueno revisar el proceso general.

Visión global del Proceso

  • Es deseable un buen entendimiento del proceso.
  • Los procesos largos, deben ser fraccionados en subprocesos, en etapas o componentes.
  • Cada punto o modo de falla de cada etapa o componente, debe ser identificado.
  • Luego debe ser identificado el efecto de cada uno de los puntos o modos de falla.
  • Finalmente es evaluado cada uno de los simples puntos de falla, para ver su riesgo y la necesidad de acciones de mitigación.

Hay diferentes herramientas para efectuar dicho análisis, nosotros hemos optado por el uso del FMEA (o en español AMFE = Análisis de Modo de Falla y Efectos).

A los interesados en el tema, disponemos de una Planilla Excel, que les servirá para llevar adelante el análisis de riesgo con FMEA, donde en una de las solapas encontrará los criterios de aceptación para cada uno de los 3 criterios utilizados y en la otra una planilla para registrar las evaluaciones efectuadas, solicítela enviando email a: info@cgmpdoc.com.

El FMEA utiliza 3 criterios:

  1. Severidad
  2. Probabilidad
  3. Detectabilidad

Los criterios están establecidos en un rango numérico, los valores altos implicando un mayor impacto. El rango utilizado puede ser bajo, como por ejemplo de 1 a 3 (Bajo, Medio o Alto) para usar la herramienta de forma más simple, sin embargo lo más común es usar un rango de 1 a 5 o de 1 a 10, dependiendo de la definición deseada del score. Un estudio largo con muchos eventos que evaluar debería estar adecuado con largos rangos de valores.

Para cada etapa o componente del proceso, determinar el o los modos de fallas y cómo la falla podría ser presentada por sí misma (efecto de la falla – qué defecto es creado).

La pregunta en esta etapa es ¿Qué podría salir mal?

Luego para casa caso de falla, es importante determinar el impacto, el efecto o el riesgo.

Para cada uno de estos casos, se determinan los 3 criterios anteriores (severidad, probabilidad y detectabilidad).

Severidad

Es una medida de las consecuencias / impacto si el evento ocurre, ¿Cuáles son las consecuencias si esto sale mal?

  • Si el riesgo identificado ha sucedido, ¿Cuál es el impacto para el usuario final o para el proceso?
  • NO incluir o considerar cualquier mitigación o control actual, o método de detección en el racional cuando se determina el rango de severidad.
  • El peor escenario debería ser usado si hay una duda entre dos scores, el score más alto debe ser usado.

Probabilidad (Ocurrencia)

Es una medida de la probabilidad de que el evento suceda. ¿Cuál es la probabilidad que esto salga mal?

  • ¿Cuál es la probabilidad que el riesgo ocurra o cuál es la historia de ocurrencia del evento?
  • ¿Hay datos históricos que pueden ser usados?

o   Para el sistema actual que está establecido o

o   Para un sistema análogo si el sistema aún no está establecido

Detectabilidad

Es una medida de la probabilidad que el evento sea detectado si ocurre. ¿Será detectado?

  • ¿Qué métodos están en el lugar disponibles para la detección si el evento ha ocurrido?
  • ¿Cuál es la probabilidad de este método de detectar el evento?

Luego con estos tres scores se calcula el RPN o Risk Priority Number, que es el producto de los 3 puntajes anteriores.

RPN = S x P x D

  • A > RPN > Riesgo
  • Para los scores de RPN que están en el mismo nivel de riesgo, el score de Severidad le da mayor peso, luego el de Probabilidad y finalmente el de Detectabilidad.

Mitigaciones

Los scores de Severidad (impacto al paciente), raramente pueden ser cambiados, pero hay instancias donde el cambio del material / proceso puede disminuir el impacto al paciente.

Prioridades de mitigación:

Las mitigaciones que reducen la probabilidad deberían ser siempre precedentes a las que mejoran la detectabilidad de la falla (es mejor reducir la probabilidad de que el evento ocurra que depender del método de detección para identificar el problema).

Si la probabilidad no puede ser reducida a nivel aceptable, entonces el método de detección que puede identificar que los eventos han ocurrido deberían ser lo más cercanos / próximos al punto de falla como sea posible

Métodos de detección de ingeniería (ejemplo sistemas de visión, alarmas, etc.), son preferidos sobre aquellos procedimentales como (muestreo AQL, testeos sobre el proceso, etc.). Las mitigaciones procedimentales son las medidas de mitigación más débiles, generalmente recaen sobre el muestreo o testeo para detectar la falla, lo cual probablemente aumenta el impacto del evento. En este caso el producto ya está hecho y el defecto puede impactar de una forma la calidad antes que sea detectado.

Documentación del FMEA

Utilizar la planilla Excel adjunta, en la misma encontrará un ejemplo para ver el uso de la misma. Además contiene notas aclaratorias sobre los campos.

Se establecen para el RPN, rango de valores para clasificar a los riesgos como Bajos, Medio o Altos (la planilla tiene una tabla con criterios, los mismos pueden ser ajustados, pudiendo uno ser más o menos exigente).

Finalmente para todos aquellos riesgos de scores alto (Alto riesgo), deben ser tomadas acciones de mitigación adicionales para reducir el nivel de riesgo a nivel bajo o medio al menos.

Luego de planeadas las acciones de mitigación adicional, el factor de RPN debe ser recalculado de acuerdo a la nueva situación.

Las acciones de mitigación (CAPAs) son seguidas usualmente a través del sistema CAPA del laboratorio y además es vital la verificación de la efectividad de las mismas.

NOTA: es sumamente importante a la hora de estimar la probabilidad de ocurrencia de la falla, conocer las posibles causas de la misma (conocimiento del proceso), de la misma forma que para la determinación de las acciones de mitigación.

El objetivo de este artículo es describir un enfoque científico basado en el riesgo para el manejo de la contaminación cruzada, identificar el nivel de riesgo de contaminación cruzada del producto y determinar las acciones de mitigación apropiadas para la protección de:

  • La calidad del producto
  • El personal

Para:

  • La construcción de nuevas instalaciones
  • La modificación de las existentes
  • La tercerización de la elaboración de productos

Esto es alcanzado en la práctica por medio de la evaluación y documentación de los riesgos de contaminación cruzada y la toma de acciones de mitigación adecuadas, a lo largo del ciclo de vida del producto entero (La elaboración del producto terminado y su packaging), de manera de asegurar que los productos son adecuadamente protegidos de la contaminación cruzada.

Hay aspectos GMP que deben ser cumplidos, y además hay aspectos relacionados a la higiene industrial y el control de la exposición del personal de manufactura que deben ser considerados.

El aumento del portfolio de productos requiere el manejo de un amplio rango de sustancias, algunas de las cuales pueden ser altamente peligrosas. Esto ha resaltado la necesidad de hacer foco sobre identificar y entender claramente los peligros y cómo se manejarán los riesgos de contaminación cruzada y el control adecuado del potencial para el paciente y la exposición del empleado.

Como mencionamos antes, algunos de los factores que afectan la elección de una planta (nueva o existente) son:

  • Portfolio de productos (peligro y riesgo)
  • Procesos requeridos
  • Restricciones de las instalaciones
  • Capacidades de los equipos (contención, facilidad de limpieza y mantenimiento)

Vamos a intentar describir las actividades de evaluación necesarias para evaluar el caso donde múltiples productos puedan ser manejados en las mismas instalaciones. Esto también aplica a la introducción de nuevos productos o a la transferencia de productos establecidos a otras plantas.

Por supuesto que el diseño y estrategia preferido es el flexible, disponer de instalaciones multiproductos, lo cual debe tomar en cuenta tanto los requerimientos GMP/ regulatorios como los de higiene industrial.

Para la gestión de riesgo seguimos los lineamientos de la guía de ICH Q9.

Un enfoque claro es necesario para evaluar los riesgos tanto en las áreas de GMP como de HI y definir sobre un criterio científico de manera de permitir tomar la decisión apropiada para el manejo del riesgo.

Debemos balancear las necesidades GMP y las de Higiene industrial (HI), ya que es muy importante asegurar que todos los riesgos, para el producto y para el operador son adecuadamente manejados.

Es sumamente importante relacionar los conceptos que vemos de contaminación cruzada con un proyecto de inversión y el Gantt de las actividades de calificación / validación, sobre todo cuando pensamos en que las plantas tienen que cumplir las exigencias de las cGMP.

Una primera evaluación de alto nivel puede ser efectuada de manera temprana en el proyecto en la fase justificación, cuando la información del producto y del proceso es reunida. Luego en la fase de diseño, el rango del producto, los límites de limpieza, diseño, layout de instalaciones y selección de equipos necesitan ser considerados desde el punto de vista de contaminación cruzada.  Más adelante en el proyecto, debe ser efectuado con más detalle un análisis de riesgo de calidad y el enfoque final de diseño y control debe ser establecido antes de la validación. La verificación de que los riesgos de contaminación cruzada son aceptables, serán alcanzados en la validación de limpieza y otros ensayos de control introducidos (para mix up o transferencia mecánica o aérea).

De manera paralela al análisis de riesgo de calidad (GMP), SHE debe efectuar un análisis de higiene industrial (HI) documentado.

Es recomendable efectuar una comparación y revisión de los dos diferentes análisis de riesgos (GMP y HI) una vez que son completados los mismos, para asegurar que cualquier conflicto sea evaluado, por ejemplo: podría haber un conflicto GMP / HI en relación a la dirección del flujo de aire, típicamente el flujo de aire podría ser bajo presión positiva desde un área de manufactura para propósitos GMP de manera de prevenir la entrada al área, pero una presión negativa para propósito de HI para mantener el producto contenido. El diseño final y la solución de control deberán ser acordadas sobre una base caso a caso balanceando ambos requerimientos (GMP y HI).

Ambos criterios GMP e HI son extraídos desde datos toxicológicos y clínicos de fuentes comunes. Cada uno debe tener un enfoque basado en la ciencia para la gestión de riesgo y una clara estrategia para evaluar la exposición potencial.

A pesar que los criterios para ambos requerimientos provienen de los mismos datos toxicológicos y/o clínicos, la forma en que los datos son usados para obtener límites aceptables y las estrategias de control adecuados difieren.

Resumen de diferencias para consideraciones GMP y de HI

 

  cGMP Higiene Industrial (HI)
¿Quién o qué está expuesto?  Producto Trabajador (operador)
Ruta de ingreso Contaminación cruzada de producto (por medio polvo asentado o producto X retenido en o sobre el producto Y)

Ingestión del paciente, IV (por vía de administración)

Inhalación

Dérmica

A través de membranas mucosas

Ingestión

Mecanismos de exposición primaria Retención (inadecuada limpieza)

Mix UP (materiales erróneos)

Transferencia mecánica (movimiento de residuos de un objeto a otro)

Transferencia aérea (polvo en el aire y contacta con productos o equipos)

Inhalación (polvo asentado puede ser re-suspendido para ser respirado en otro momento)

Absorción por piel (por contacto o por vía heridas)

A través de membranas mucosas (trabajador contaminado toca sus membranas mucosas)

Ingestión

Bases de estándares para análisis de riesgo Límites de limpieza

Exposición diaria aceptable (ADE = Acceptable Daily Exposure)

Límite de exposición ocupacional (OEL= Occupational Exposure Limit)

 Flujograma GMP de contaminación cruzada GMP: véalo aquí.

Análisis de riesgos GMP

La siguiente información necesitará ser colectada y comprendida para efectuar la evaluación de riesgo:

  • Propiedades del producto (ej. Solubilidad, toxicidad, tamaño de partícula) del producto que está en las instalaciones o que será introducido en ellas
  • Layout, flujo del proceso, flujo del personal, flujo del aire, diseño de la ventilación
  • Diseño del equipamiento y método de operación
  • Controles ya existentes en las instalaciones o controles planeados para nuevas instalaciones o productos
  • SOPs para control de mix up, limpieza, vestimenta, etc.

Cualquier declaración inicial de alto nivel y decisiones en un proyecto que un cierto producto o tipo de producto no puede ser introducido o empacado en una instalación necesita ser documentado apropiadamente, por ej. En la estrategia de validación y además en las bases del documento de SHE de las instalaciones.

Hay objetivos claves GMP, requerimientos de alto nivel para minimizar el riesgo de contaminación que necesitan ser documentados en URS (requerimientos de usuarios) para asegurar que ellos están incluidos en el proceso de calificación / validación.

Para instalaciones existentes, evaluar que el nuevo producto no será comprometido / contaminado por cualquiera de los productos o procesos existentes en las instalaciones y viceversa, más allá de un límite aceptable.

Para instalaciones nuevas, los productos no serán comprometidos o contaminados en ninguna forma por medio de las actividades de manufactura más allá de un límite aceptable.

Para contaminación cruzada las siguientes cuatro rutas necesitan ser consideradas:

  1. Mix- Up
  2. Retención
  3. Transferencia mecánica
  4. Aerotransporte

Para ver mas detalle sobre cada una de ellas haga click en Contaminación cruzada.

El impacto sobre el producto / paciente necesita ser evaluado usando la información y conocimientos disponibles.

La competencia en el equipo debería representar especialista con conocimiento en todas estas áreas para que el análisis sea exitoso.

Riesgo: es la combinación de la severidad de las consecuencias potenciales derivada de un peligro (o combinación de peligros) y la probabilidad que esas consecuencias sean realizadas.

Hay diferentes herramientas de análisis de riesgo que pueden ser usadas pero todas ellas deberían incluir factores definidos para evaluar severidad, probabilidad de ocurrencia y detectabilidad y manejar escalas de score comunes.

Severidad: una medida de las posibles consecuencias de un peligro, por ej. Cuán severo podría ser si un paciente / empleado es expuesto a esa peligrosa contaminación? (la escala podría ir desde inadvertido a fatalidad).

Ocurrencia: una medida de la probabilidad que un peligro ocurra. Por ej. Cuán probable es que esa contaminación peligrosa ocurra? (escala desde una ocurrencia en más de 5 años a más de una por lote).

Detectabilidad: la habilidad para descubrir o determinar la existencia, presencia, o hecho de un peligro, por ej. Cuán probable es detectar la contaminación peligrosa antes que la misma sea expuesta al paciente / empleado? (la escala puede ir desde obvio o monitoreado y con alarmas a no detectable).

El propósito del análisis es describir el riesgo, entender la probabilidad de su ocurrencia, si será detectado y evaluar su severidad.

Mitigaciones del riesgo pueden entonces ser determinadas e implementadas. El análisis asistirá en concluir en qué tipo de instalaciones el producto / productos puede ser acomodado. El análisis de riesgo debería ser revisado por medio del proyecto sobre una base regular de manera de asegurar que las mitigaciones son implementadas. El proyecto debería chequear que todas las mitigaciones están “in place” antes de sea entregado para la operación de rutina.

Cuando hay cambios al alcance original del análisis de riesgo el negocio debería revisar el análisis. Si no hay cambios en las instalaciones es recomendado revisar el análisis sobre una base regular, la frecuencia podría tomar en cuenta el portfolio de productos existente.

Espero que le resulte interesante.