Posts tagged ‘Distribución normal’

Continuando con las herramientas que tenemos para el análisis de la causa raíz de nuestros problemas, escogimos un par de ellas, pienso que son las más conocidas y quiero aprovechar para refrescarlas, me refiero a:

En este artículo nos vamos a referir al uso de los Histogramas para ver cómo están conectadas las posibles causas con el problema y cuáles causas parece que hace el mayor daño.

El propósito de la fase de análisis de datos de causa problema (última etapa antes de intentar solucionar el problema), es clasificar las posibles causas.

Muchas veces tenemos la tentación de ir para adelante con análisis parciales sobre el tema y la intención de resolver el problema de una sola vez, pero SEAMOS PACIENTES. Porque perseguir todas las causas posibles, es gasto de energía, tiempo, dinero eliminando síntomas relacionados y quizás no las causas. Sin duda, usted hará un mejor análisis para orientar con precisión la causa antes de iniciar el proceso de eliminación.
Así que tenga paciencia, haga el ejercicio y luego encontrará la causa raíz

Propósito y aplicaciones de los histogramas

Un histograma, es usado para mostrar la distribución y variación de un conjunto de datos (medidas de longitud, diámetro, peso, duración, costos, etc.)

Ud. puede presentar la misma información en una tabla, sin embargo, el formato gráfico usualmente es más fácil de interpretar.

Aplicaciones técnicas de los histogramas en el análisis de causa raíz incluyen:

  • Presentación de los datos para determinar cuáles son causas dominantes de un problema
  • Entender la distribución de ocurrencia de distintos problemas, causas, consecuencias, etc.

En la distribución de histograma, es importante mencionar un concepto estadístico básico, llamado distribución normal, este es el caso donde un conjunto de observaciones es distribuido uniformemente alrededor de un punto central, o valor esperado. Si los datos de una distribución normal son presentados en un histograma, la gráfica empezará a decaer a ambos lados de este valor central. La representación es simétrica y luce como una campana.

Etapas para confeccionar un histograma

  1. Contar el número de datos (N) – para producir un histograma válido al menos deberíamos tener 30 datos.
  2. Calcular la distancia numérica (R) entre el valor mayor y el menor de los datos.
  3. Dependiendo del valor de N, dividir R en un número de datos de C que puede ser hallado en la siguiente tabla:

 

# de datos (N) # de clases (C)

< 50

5 – 7

50 – 100

6 – 10

100 – 250

7 – 12

> 250

10 – 20

 

  1. Determinar el ancho de cada clase (H), esto es calculado a través de la siguiente fórmula:

H = R/C

  1. Determinar los valores menores y mayores para cada clase individualmente estableciendo el valor mínimo del conjunto de datos como el valor más bajo para la primera clase. Encontrar el valor más alto para este tipo mediante la adición del ancho de la clase con el valor más bajo. El valor más alto de una clase, a su vez se convierte en el valor más bajo de la clase siguiente. recordar que el valor más bajo siempre se incluye en su clase (Esto es, ≥ valor menor), mientras que el valor superior pertenece a la clase siguiente (Esto es, < valor superior)  
  2. Construir el histograma (para simplificar su construcción usar Excel). Marcar las clases a lo largo del eje horizontal yla Frecuenciaa lo largo de la vertical, utilice las barras verticales para indicar la distribución entre las clases.

Algunos ejemplos de interpretaciones de histogramas pueden ser:

  • Un pico mostrando el valor medio para el proceso que no está centrado, frecuentemente tiene una causa para ello, la cual podría ser interesante estudiarla
  • Dos claros picos podrían provenir de dos diferentes poblaciones de datos tales como dos operadores, dos turnos, dos vendedores, etc. Esto debería ser chequeado.
  • Un patrón de corte que no muestra signos de reducción progresiva sugiere que los datos están siendo sometidos a un proceso de selección durante o después de la recolección
  • Un patrón en forma de peine indica que fueron definidas demasiadas clases y algunas clases son incapaces de capturar datos.

Un ejemplo del uso de un Histograma

Un local de comida usa distintos repartidores para efectuar la  entrega de los pedidos a sus clientes. Una de sus cartas de presentación es la entrega antes de los 20 minutos de recibido el pedido.

Frecuentes quejas sobre entregas tardías repentinamente comenzaron a ocurrir.

Cuando el dueño del local habló sobre los reclamos con los repartidores, ellos se mostraron sorprendidos, no arrojaron explicación alguna sobre el hecho, y prometieron cumplir con el estándar.

Luego de un breve período de reducción de los reclamos, los mismos comenzaron a aumentar otra vez hasta los niveles anteriores.

El dueño del local comenzó a tomar nota de los reclamos y a registrar cuál era el repartidor que había efectuado la entrega.

Luego de varias semanas de registro, analizó los datos (el diagrama resultante es mostrado más abajo). Cuando el repartidor fue enfrentado con los datos reconoció que estaba teniendo serios problemas mecánicos con la moto, los cuales le impedían hacer su entrega eficientemente, de ahí la demora en las entregas.

Les dejo el Histrograma y espero que les haya resultado útil.