Posts tagged ‘estadísticas’

El año pasado, dicté algunos talleres de estadística y como siempre me gusta intercambiar ideas con los participantes, siempre aprendo algo nuevo de esas discusiones.

Uno de los participantes me comentaba que utilizaba para la construcción de las cartas de control de datos individuales el software Excel, a lo cual le dije que el Excel es una de las alternativas en el caso de no disponer algún software como por ejemplo Minitab.

Cuando hablamos sobre la forma de calcular los límites de control de las cartas individuales me dijo que lo hacía de la siguiente manera:

Límite inferior de carta de control: LCI = Xmedia – 3 DS

Límite superior de carta de control: LCS = Xmedia + 3 DS

Donde Xmedia es la media estimada del conjunto de datos y DS es la desviación estándar de ese mismo conjunto de datos.

Lo anterior es un enfoque correcto para calcular los límites del gráfico de control. La media estimada es simplemente la media del conjunto de datos, formada sumando los puntos de datos en el conjunto de datos y dividiendo por la cantidad de puntos de datos en el conjunto de datos. La desviación estándar estimada se calculó utilizando la desviación estándar de la muestra. En Microsoft Excel esto se obtiene usando la función STDEV y se calcula fácilmente. Aunque este no es el enfoque correcto.

El problema con el uso de la función STDEV de la muestra es que no tiene en cuenta la secuencia temporal de los datos. No importa cómo mezcle un conjunto de datos, seguirá teniendo la misma desviación estándar de la muestra. Entonces, lo que se requiere es una estimación de la desviación estándar que tenga en cuenta la secuencia de tiempo de los datos. En la práctica, esto se hace utilizando el rango móvil de los datos. Para dos puntos de datos consecutivos, el rango móvil es la diferencia absoluta entre los dos puntos de datos. Entonces, si el conjunto de datos tenía N puntos de datos, tendrá N-1 valores de rango móvil. La desviación estándar del conjunto de datos se puede estimar como:

DS = MediaRM / 1,128

Donde MediaRM es el promedio de los N-1 rangos móviles.

Cuando los datos se volvieron a representar en gráficos de control con los límites de control adecuados, las señales de fuera de control fueron claras.

Como nota al margen, el otro problema con el enfoque del graduado de MBA es que nunca construyó el gráfico de rango móvil, que es una serie de tiempo de los valores del rango móvil con un límite de control apropiado. En general, se acepta que es valioso mirar este gráfico, porque representa los mismos datos de una manera diferente y brindará otra vista de lo que está sucediendo en el proceso. Es fácil de construir con un software como Minitab junto con la tabla de valores individuales

Les dejo un ejemplo (figura 1) donde ingresamos 50 datos individuales en Minitab y luego graficamos la carta de control I-RM (datos individuales – rango móvil).

De forma paralela ingresamos esos mismo datos en una planilla Excel y calculamos el valor promedio y la desviación estándar.

Podemos observar que los límites de control de la carta con Excel son más amplios debido a que el valor de desviación estándar calculado por Excel es mayor al calculado por Minitab de acuerdo a lo indicado anteriormente, por lo tanto los valores individuales que en la carta de control con minitab dieron fuera de control, en la carta construida con Excel están dentro de los limites.

La carta de valores individuales tiene límites de control más sensibles al cambio.

Otro tema a tener en cuenta es la construcción del gráfico de rango móvil, sumamente importante para ver las variaciones individuales a lo largo del proceso.

Figura 1

Cálculo x Excel

Promedio: 79,74

Desviación estándar: 2,5055856

LCS: 87,26

LCI: 72,22

Para garantizar que las muestras sean verdaderamente representativas del lote, se debe utilizar un plan de muestreo. Un plan de muestreo basado en criterios estadísticos puede proporcionar la confianza de que la muestra analizada es representativa de la calidad del material. Podemos tener dos enfoques, uno NO estadístico y otro estadístico.

1. Enfoques no estadísticos

Enfoque √N + 1 Este enfoque para determinar el número de muestras no tiene base en Estadísticas. Sin embargo, esto se ha utilizado comúnmente en la industria farmacéutica. industria durante varias décadas. El método se basa en la fórmula n = √N +1, donde N es el número de unidades de muestreo en el lote. Para las materias primas, este se considera el contenedor en el que se envasa la materia prima. El valor de n (número de recipientes de donde tomar la muestra) se obtiene mediante redondeo simple.

Normalmente, las muestras tomadas se combinan para formar una muestra compuesta para pruebas, aunque también pueden testearse individualmente.

2. Enfoques estadísticos

Varias normas ANSI / ISO proporcionan planes de muestreo basados ​​en estadísticas que proporcionar una estimación de los riesgos asociados con ellos. Por el contrario, basado en el riesgo aceptable para cualquier materia prima y / o CQA en particular, se puede desarrollar un plan de muestreo que cumpla o supere el criterio de riesgo. El riesgo aceptable se traduce en valores AQL / RQL que luego se utilizan para encontrar el plan de muestreo adecuado.

Los planes de muestreo basados ​​en estadísticas requieren que las muestras individuales se analicen por separado. Como tal, una muestra compuesta no debe usarse en el muestreo basado en estadísticas.

Ejemplos:

ANSI Z1.4 / ISO 2859-1: 1999 (E), estos estándares están destinados a ser utilizados para materiales que presentan ellos mismos como componentes individuales o unidades tales como envases. No son estrictamente apropiados para materias primas. Los planes de muestreo proporcionan el número de unidades a muestrear y el criterio de aceptación para el número de Unidades “buenas” para aceptar el lote. La unidad en este caso es el envase. La muestra de cada recipiente se analiza para determinar si cumple o no cumple con las especificaciones y determina si es un envase “bueno”. El lote es aceptado si el número de envases que cumplen con las especificaciones criterio de aceptación.

ANSI Z1.9 / ISO 3951-1: 1999 (E), similar a la anterior, aunque también se han utilizado en la industria para materias primas.

ISO 10725, esta norma está destinada específicamente a planes de muestreo de materias primas. Se determinan en función de la variabilidad de la materia prima, el muestreo y el método de ensayo.

El enfoque de PPQ (Proces Performance Qualification o Calificación de Performance del Proceso) debería estar basado sobre una fuente científica y el nivel general actual de entendimiento del producto y proceso y control demostrable. Los datos acumulados de todos los estudios relevantes (ej. Experimentos de diseño, laboratorio, pilotos, y lotes comerciales) deberían ser usados para establecer las condiciones de elaboración en el PPQ. No es típicamente necesario explorar el rango de operación entero a escala comercial si puede ser provisto aseguramiento a partir de los datos del diseño del proceso. Experiencias previas creíbles con productos / procesos suficientemente similares puede ser además ventajoso. Mediciones objetivas (ej. Métricas estadísticas) deberían ser empleadas, siempre que sea posible y significativo para alcanzar un adecuado aseguramiento.

En muchos casos, el PPQ tendrá un alto nivel de muestreo, testeos adicionales y un examen más profundo de la performance del proceso que lo que debería ser típicamente de rutina de producción comercial. El nivel de monitoreo y testeos debe ser suficiente para confirmar la uniformidad de calidad del producto a lo largo del lote. El nivel aumentado de muestreo, inspección y testeos, debe continuar a lo largo de los lotes de verificación del proceso, para establecer niveles y frecuencia de muestreos de rutina y monitoreo para el producto / proceso particular. Consideraciones para la duración de un muestreo aumentado y período de monitoreo puede incluirse, pero no está limitado a, volumen de producción, complejidad del proceso, nivel de conocimiento del mismo y experiencia con productos y procesos similares.

Un proceso de elaboración que usa PAT puede garantizar un enfoque de PPQ diferente. Los procesos PAT están diseñados para medir en tiempo real los atributos de un material en procesos y entonces ajustar el proceso en un loop de control para los atributos medidos. No olvidar, el objetivo de la validación de todo proceso de manufactura es el mismo: establecer evidencia científica que el proceso es reproducible y proveerá consistentemente un producto de calidad.

La idea general de la administración es enfocarse en el thruput (1).

En cualquier cadena de producción se observan dos características:

  • sucesos dependientes; y
  • fluctuaciones estadísticas (o aleatorias).

Recurriendo al conocido ejemplo de los pasteles, supongamos que tenemos dos máquinas. Una hace masas y la otra las rellena. La primera puede hacer diez masas por hora en promedio, mientras que la otra puede rellenar cinco masas por hora en promedio.

El relleno depende de las masas, porque no se puede rellenar los pasteles antes de que estén hechas las masas. Estos son sucesos dependientes.

Es importante darse cuenta de que la palabra promedio indica que a veces se harán 11 masas por hora y otras 9. Lo mismo pasa con el relleno. Lo que significa que hay fluctuaciones estadísticas.

Para ilustrar estos conceptos más profundamente usaré el mismo ejemplo que usó el Dr. Goldratt en su famoso libro “La Meta”, donde el protagonista, Alex, debe guiar una excursión de boy-scouts.

Al iniciarse el día, Alex se da cuenta de que está cargo de varios niños y él es el único adulto. Deben recorrer 16 km en el día, así que calcula que a una marcha de 4 km/h en promedio, demorarán cuatro horas en cubrir el recorrido.

Y empiezan la caminata. Los niños son muy disímiles unos de otros, así que unos se empiezan a adelantar mientras que otros se retrasan, especialmente uno en particular. Herbie es un niño bastante gordo que, si fuera chileno, de seguro llevaría varios tarros de manjar en su mochila. Alex decide ir el último para dirigir la marcha. Al poco rato se da cuenta de que va caminando detrás de Herbie y alejándose cada vez más del grupo. Cada cierto tiempo, Alex grita que todos esperen para reagruparse. Cuando llega al monolito que marca los 8 km han transcurrido dos horas y media, y eso considerando que los más rápidos caminaban más rápido que su promedio esperado.

Las reflexiones de Alex mientras caminan le van enseñando varias cosas respecto de la producción. Si el camino que no han pisado es la materia prima, el camino que deja atrás el último de la fila es el producto terminado, y cada caminante es un proceso de la cadena, entonces esta marcha se parece mucho a un proceso productivo.

Cuando los niños más rápidos se adelantan, se alarga la distancia entre el primero y el último, por lo que aumenta el inventario en proceso. Por supuesto que lo que importa es que llegue todo el grupo al final, no un pequeño grupo: mientras no llegue el último de la fila, no se ha entregado el producto terminado.

Al observar la fila mientras marcha, algunos niños paran a arreglarse la mochila o amarrarse los zapatos. Cuando esto ocurre, los niños que van detrás de aquéllos deben parar. Al rato, apuran el paso y vuelven a la normalidad, pero los lentos quedan más atrasados.

Cada cosa que observa Alex en la marcha refleja un aspecto de la producción: sucesos dependientes y fluctuaciones estadísticas.

Como la idea no era ir a gritos sujetando el grupo o apurando a los lentos, Alex idea un método para que el grupo alcance su máxima velocidad permaneciendo unidos.

Una posibilidad es amarrar a cada niño con el que le sigue, así los que son más rápidos se mantienen agrupados y el grupo avanza en forma pareja. ¿Le parece ridículo? El sistema Just in Time (JIT) de los japoneses con sus famosas kanban (tarjetas) es exactamente esto. Cada proceso tiene su tarjeta con el inventario a procesar. Cuando la tarjeta de un proceso acumula cierto nivel, ese proceso debe parar. Es lo mismo que amarrar cuerdas y limitar la velocidad de los rápidos.

¿Qué ocurre con las paradas de uno u otro niño entre medio? Depende del largo de las cuerdas. Si son muy largas, la distancia entre niño y niño puede absorber la parada sin detener al grupo. Pero esto significa tener mucho inventario en proceso. Si las cuerdas son muy cortas, cualquier parada de algunos segundos detendrá la fila completa. El largo de las cuerdas (el inventario permisible en las tarjetas) regula las fluctuaciones que se producen en cada proceso en el tiempo. Está claro que el principal beneficio de JIT es lograr un flujo suave si acumular inventario en proceso.

Volviendo a las reflexiones de Alex, después de observar el comportamiento de la fila por unos minutos, la idea que tuvo fue esta:

–      instruyó a todos para que fueran a su ritmo por diez minutos, incluso rebasándose.

–      A los diez minutos debían parar y agruparse en la posición en que quedaron.

–      Por último, se tomaron de las manos en la fila y el primero pasó al último lugar, arrastrando toda la fila.

–      Y empezaron a caminar nuevamente.

Ahora quedó ordenada la fila con el más lento adelante y el más rápido atrás. El efecto de esto fue que el grupo se mantuvo compacto el resto de la caminata, lo que resolvía el problema de no perder de vista a ninguno de los niños, minimizando la distancia entre el primero y el último (mínimo inventario en proceso).

Ahora el problema era aumentar la velocidad de marcha. Para entonces era obvio para Alex donde buscar la mejora. Detuvo la marcha y pidió su mochila a Herbie: ¡varios tarros de manjar! Demás está decir que con ese peso Herbie disminuía su ya limitada capacidad para caminar. Se repartieron el peso de la mochila de Herbie entre varios de los últimos (los más rápidos), dándole a Herbie todas las facilidades para que no parara en ningún momento, y el resultado fue:

–      aumentaron la velocidad de TODO el grupo; y

–      cuando se producía alguna fluctuación por paradas “técnicas”, rápidamente los últimos alcanzaban al grupo al reanudar la marcha.

–      El hecho de no poder rebasarse aseguró que siempre que hubo fluctuaciones de velocidad entre medio, la velocidad de reagrupamiento fue óptima.

Alex había resuelto el problema.

Ahora veamos cómo aprovechar lo aprendido para administrar el más complejo ambiente de una planta de producción.

El primer efecto se parece al que comentábamos la vez pasada de amarrar cuerdas: se mantienen todo juntos. En una planta de producción eso significa menor inventario en proceso.

La diferencia entre uno y otro método es que una detención de uno de los rápidos, en el caso de las cuerdas significa una detención del grupo completo. En el caso del método de Alex, la línea no se detiene desde Herbie hasta el que se detuvo. Como en el trayecto completo hay suficiente tiempo para reagruparse de nuevo, esa detención no afectará el rendimiento global si Herbie sigue a su ritmo sin parar.

Lo importante es darse cuenta de que un minuto perdido por Herbie es un minuto perdido por todo el grupo. En cambio, un minuto perdido por uno de los rápidos, no tiene impacto en el tiempo total empleado por el grupo. ¿Qué nos dice esto? Es obvio que hay que concentrarse en que Herbie no pierda tiempo: no molestemos a los de más capacidad porque, para Alex, no sólo no es irrelevante, sino que es pérdida de tiempo si no puede darle su atención a Herbie.

¿Se puede generalizar esto? Pero, ¿qué queremos generalizar? Podría ser el proceso para concentrar la atención en lo importante: el proceso para FOCALIZAR.

TOC ofrece este método en cinco sencillos pasos:

  1. IDENTIFICAR la(s) restricción(es)
  2. Decidir cómo EXPLOTARLA(S)
  3. SUBORDINAR todo el sistema a la decisión anterior
  4. ELEVAR la(s) restricción(es)
  5. Evitar la INERCIA y volver al punto 1.

Veamos rápidamente lo que hizo Alex, para después terminar con un problema más complejo (aunque bastante simple).

Paso 1, encontrar a Herbie. Paso 2, decidió que Herbie no debía parar para nada y limitó su vigilancia a Herbie. Paso 3, todo el resto debía seguir el paso de Herbie. Paso 4, aliviar la mochila de Herbie. Paso 5, si se hubiera empezado a distanciar Herbie, el primero del segundo grupo habría sido identificado como la nueva restricción, pasando nuevamente los cuatro primeros pasos, hasta lograr una marcha estable.

Veamos ahora qué pasa en una fábrica. Evidentemente, no se puede ordenar los procesos poniendo al principio el más lento, aunque sería lo más cómodo. De hecho, puedo decirles que Murphy sí existe, porque cuando debí aplicar esto a una línea de producción, mi Herbie era exactamente… ¡el último! Como era de esperar, la sensación de avance era muy engañosa porque el último 10% del trabajo tomaba el 40% del tiempo de proceso. ¡Ahora todos ven lo obvio! Pero recuerdo la peleas con mi Jefe de Planta para que se olvidara de los procesos con más capacidad: que la eficiencia, que los tiempos perdidos, etc., en fin, todas esas cosas tan arraigadas en las “best practices” y que intento arrancar con estos artículos. Puedo decirles que impuse mi criterio y aumentamos al doble la productividad en el primer mes, y otro 50% adicional el siguiente mes.

Volviendo al caso de los boy-scouts, si queremos que represente una línea de producción real, no podemos cambiar de posición a los niños. Así Herbie queda en alguna posición intermedia de la fila. ¿Qué se puede hacer para no ir a los gritos sujetando el grupo?

¡Eso es!, usemos una cuerda. Veo que están atentos:-). Pero no como en JIT, amarrando todos con todos (ver artículo del mes anterior). Bastará con amarrar una cuerda entre Herbie y el primero de la fila. El efecto de esto es que los que van detrás de Herbie tienen el comportamiento como si Herbie fuera el primero. Y los que van delante de Herbie, deben ir al ritmo del primero de la fila. Pero el primero debe ir al ritmo de Herbie.

Lo anterior representa la subordinación de todo el sistema al ritmo de Herbie. Ahora Alex le aligera la mochila y le pasa un tambor a Herbie para que marque el ritmo. Con esto tenemos un grupo informado del ritmo de producción, con un Herbie a máxima capacidad. Y dependiendo del largo de la cuerda, Herbie mantendrá unos metros delante de él que le permitan no perder tiempo si uno de los de adelante baja el ritmo.

Los metros de holgura entre Herbie y su antecesor son un amortiguador para absorber las fluctuaciones del sistema. Por lo tanto, el largo de la cuerda hay que regularlo al mínimo que permita una amortiguación cercana al 99% de las fluctuaciones. Si Herbie se detiene alguna vez, se alarga la cuerda. Si Herbie va demasiado atrás, se acorta la cuerda.

En una fábrica, lo primero será identificar el cuello de botella. Después, decidir cómo explotarlo (a qué producto dar prioridad, etc.). Para terminar, decidir cuánto inventario permitiremos acumularse delante del cuello de botella, con un sistema que le diga al primer proceso que no pida material cuando su inventario alcance ese nivel (el largo de la cuerda).

En jerga de TOC, este procedimiento se llama DBR-BM (Drum Buffer Rope – Buffer Management), Tambor-Amortiguador-Cuerda y Administración de Amortiguadores. El gerente de esa línea tiene claro en qué concentrar su atención: que su cuello de botella produzca al máximo.

 

(1): En jerga TOC, la capacidad de un sistema de generar beneficio por unidad de tiempo se llama throughput o trúput castellanizándolo. En el caso de una empresa lucrativa, el sistema genera dinero; en una organización de salud sin fines de lucro, el sistema genera unidades que miden salud o calidad de vida; etc.

Ahora falta usar este procedimiento en un caso real, donde deban tomar decisiones estratégicas.

Dejaré planteado un caso de ejercicio. Para aquellos que quieran hacerlo y subir la respuesta dentro de los comentarios al artículo y les enviaré la respuesta de Matías Birrel al problema.

Problema

Una empresa produce dos productos, el X y el Y. El precio de X es $100 y el de Y es $ 90. Ambos ocupan $50 de materia prima.

Las máquinas de esta empresa son tres: la A, B y C, cada una con sus respectivos operadores.

Para producir una unidad de X se necesitan 40 minutos de A y 30 minutos de B.

Para producir una unidad de Y se necesitan 20 minutos de B y 30 minutos de C.

Supongan que se trabaja 8 horas al día por 20 días al mes; que entre sueldos y otros gastos, mensualmente la fábrica gasta $ 16000; y que la demanda que enfrenta es de 300 unidades de cada uno.

 ¿Cuál es la máxima utilidad que puede obtener esa fábrica?